Реферат проблема распутывания узла



Скачать 184.19 Kb.
страница2/8
Дата05.11.2018
Размер184.19 Kb.
Название файлаРеф.Проблема распутывания узла.docx
ТипРеферат
1   2   3   4   5   6   7   8
1. История вопроса

Узлы повсеместно использовались уже со времен античности. Это объясняется их важной технологической ролью, особенно в мореходстве и строительстве. Но появление веревок и узлов произошло раньше, в доисторические времена, и предшествовало изобретению топора, лука, колеса [3].

Сегодня мы применяем узлы, не задумываясь даже, что их возраст исчисляется тысячелетиями. Нам и в голову не приходит, что такие узлы, как выбленочный, прямой и беседочный (рис.1), служили жителям Древнего Египта еще пять тысячелетий назад. (Например, выбленочный узел был обнаружен на двери третьего помещения гробницы фараона Тутанхамона.)

Рис. 1.


Прямой (или квадратный) узел, хорошо известный в Древнем Египте, был широко распространен в быту древних греков и римлян. Он украшал жезл древнеримского бога Меркурия — покровителя торговли — и назывался nodus Hercules — геркулесовым узлом, так как этот древний герой носил шкуру убитого льва, передние лапы которого связывал на груди именно так [3].

Изобретателями самых хитроумных и надежных узлов оказались моряки. Ведь именно им, чаще, чем постоянным обитателям суши, приходилось иметь дело с веревками и канатами.

Наряду с технологическими и практическими применениями есть ещё и магический аспекты. Скандинавские народы (возможно, в силу своей неразрывной связи с морем) особенно любили украшения в виде узлов. Их часто помещали на оружие, форштевни кораблей, применяли для создания узоров.

Одно из наиболее ярких применений узлов можно увидеть в орнаментах болгарских, новгородских и московских летописей XII–XIV вв.

Отметим существенную роль узлов в арсенале фокусника: узлы, которые таковыми не являются, веревки, которые мгновенно развязываются.

Теория узлов и зацеплений — наука с более чем 200-летней историей; ее первые значительные результаты принадлежат великому Гауссу; теория узлов достигла своего апогея в девяностые годы прошлого столетия в работах В.А.Васильева и четырех филдсовских лауреатов В. Джонса, Э. Виттена, В.Дринфельда и М. Концевича. Удивительно, что отдельные достаточно свежие достижения этой теории, например знаменитый полином Джонса [5].

Математики впервые заинтересовались косами и узлами лишь в XIX веке и с того времени теория кос и узлов обрела статус самостоятельного раздела математики. Изучением кос и узлов занимались такие великие ученые, как Эмиль Артин (создатель теории кос), Дж. Конвей, Дж. Александер, В. Джонс, В. Тураев, А. Решетихин, Л. Кауфман и другие.

Одним из достоинств этой науки является доступность её предметов исследования: достаточно взять любую бечёвку и соединить её концы, получится гладкая замкнутая кривая без самопересечения - узел, а конечный набор замкнутых непересекающихся ориентированных ломаных в прост ранстве будет зацеплением [5].

Хитроумная и одновременно очень простая геометрическая конструкция, принадлежащую немецкому математику Курту Рейдемейстеру. Эта идея позволяет свести изучение узлов в пространстве к изучению их проекций (диаграмм узлов) на плоскости. Алгоритм, изобретенный соотечественником Рейдемейстера Вольфгангом Хакеном, позволяет определить, можно или нельзя развязать данный узел, но этот алгоритм очень сложный. Дело в том, что иногда, чтобы распутать узел, нужно сначала его еще больше запутать ( так, в переносном смысле, бывает и в реальной жизни) [2].

Изобретение, на первый взгляд тривиальное, англо- американца Джона Конвея, одного из наиболее оригинальных математиков 20 века. Речь идет о новых небольших геометрических операциях над диаграммами узлов. В отличие от операций Рейдемейстера, они позволяют изменять не только вид диаграммы узла, но также и тип узла, а иногда преобразовывают его в зацепление. С их помощью можно определять и вычислять вполне элементарным образом полином Александера--Конвея узла (или зацепления). Эти операции дают очень удобный и достаточно эффективный метод доказательства того, что два узла имеют разный тип и, в частности, что некоторые узлы не могут быть развязаны. [6].

Развитие теории узлов инициировал великий английский физик Дж. Максвелл. Он пришёл к выводу, что волны осуществляют электромагнитные взаимодействия, а потом его осенила ещё более смелая мысль: сами взаимодействующие частицы - тоже волны; но так как частицы (атомы) очень маленькие, а волны - длинные, волны-атомы должны замыкаться на себя на небольшом участке пространства: это узелки, в памяти которых хранится вся физико-химическая информация об атоме, закодированная в самом характере заузливания атома. Максвел и его ученики принялись за исследование узлов, начали их систематическую классификацию в виде таблиц [1].

Однако наиболее успешно теория узлов стала развиваться лишь вместе с топологией - наукой о свойствах фигур, сохраняющихся при гомеоморфизмах. Математиков в ней привлекла сама красота предмета.




Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8


База данных защищена авторским правом ©rppna.ru 2017
обратиться к администрации

    Главная страница